# Assessing the orange roughy south of Johnies

Anabela Brandão and Doug S. Butterworth

Marine Resource Assessment & Management Group (MARAM) Department of Mathematics and Applied Mathematics University of Cape Town Rondebosch, 7701, Cape Town

March 2004

## Abstract

The biomass of orange roughy for the region south of *Johnies* is estimated coarsely by treating the product of standardised CPUE and area as an index of abundance, and then calibrating against population model based estimates of abundance from the recognised aggregations. For the intermittent aggregation model estimates of abundance, this suggests a biomass in this *South* region in the 20 000–70 000 ton range, with a corresponding annual sustainable yield in the 500–1 500 ton range.

#### Introduction

Over the past few years an increasing quantity of orange roughy has been taken from outside the existing quota management areas that correspond to the four recognised aggregations (*Hotspot, Rix, Frankies* and *Johnies*). Recently most of this additional catch has come from the area south of *Johnies* (see Table 1).

It is important therefore to attempt to relate the size of this catch to the likely biomass of orange roughy in this region and the likely sustainable yield therefrom. This paper attempts some coarse computations by using the product of standardised CPUE and sub-aggregation area as an index of abundance.

## **Comparative Abundance Indices**

Fig. 1 shows the tows made south of *Johnies*. A polygon was drawn around the central core of this distribution (see Figure), and used to compute ocean areas for sub-

aggregations which are taken to be defined by lines of latitude. The results are reported in Table 2.

A GLM-standardisation of the CPUE data from these *South* sub-aggregations was then conducted as in Brandão and Butterworth (2004a). The results of this exercise (for the four recognised aggregations as well as for *South*) are given in Table 3, where the CPUE predicted for a chosen vessel and month has been multiplied by sub-aggregation area and added over the constituent sub-aggregations of each aggregation to provide an index of abundance (of the form density×area).

A concern for this analysis is the possibility of "double counting": are the orange roughy south of *Johnies* merely the fish that normally aggregate during the July – August spawning period at *Johnies*, which then arguably disperse to the south in other months. Fig. 2 compares the month factor estimated in the GLM analyses for the recognised and for the *South* aggregations. Both plots show very similar trends, suggesting therefore that these *South* roughy are not the same fish as aggregate at *Johnies*. (Furthermore, the fish from *South* tend to be smaller, R. Morrison, pers. commn.)

Note also that the abundance index time series for *South* in Table 3 shows a marked peak over 2001–2002. This effectively precludes use of this series to fit a population model to obtain abundance estimates, as this trend is contrary to the decline to be expected in terms of the effect of catches as predicted by conventional models.

## **Calibrating the CPUE-based indices**

Table 4 lists population model-based estimates of abundance for the various recognised aggregations from Brandão and Butterworth (2004b). The averages over time for each aggregation can then be used to calibrate the averaged abundance indices in Table 3 to provide estimates of biomass in *South*:

The results are shown in Table 5 (from which *Hotspot* was excluded as it is dissimilar to the other larger aggregations), and range from some 6 000 to 70 000 tons.

DWFWG/WkShop/Mar04/doc3.

## What level of South catch might be sustainable?

The total catch from the *South* region to date is only 1 492 tons. Compared even to the lowest of the estimates in Table 5, this is relatively small, suggesting that the catch has not depleted abundance in this region substantially, so that estimates in Table 5 would correspond closely to the pristine population abundance (K).

MSY estimates in Brandão and Butterworth (2004b) suggest that the ratio of MSY/*K* is some 2.2% for an *M* of about 0.05 yr<sup>-1</sup>. This in turn suggests annual sustainable yields for the *South* region of some 130–350 tons based upon Reference Case biomass estimates, or some 500–1 500 for those derived from the intermittent aggregation models.

Further work should examine the length structure of orange roughy from *South* more closely. The sustainable yield estimates for *Johnies* assume that juvenile orange roughy from that population are not present on the aggregation, and are not subject to harvest. One needs to verify that the *South* fish are not sufficiently small in size to possibly constitute the juvenile component of the population associated with *Johnies*.

#### Acknowledgements

Assistance with provision of the data used for these analyses by Arved Staby (NatMIRC) is gratefully acknowledged, as is the funding support provided by the Namibian Deepwater Fishing Industry and the Namibian Ministry of Fisheries and Marine Resources.

#### References

- Brandão, A. and Butterworth, D.S. 2004a. Delta-lognormal linear models applied to standardise CPUE abundance indices (1994–2003) for orange roughy off Namibia.
  Namibian Ministry of Fisheries and Marine Resources document DWFWG/WkShop/Mar04/Doc. 1.
- Brandão, A. and Butterworth, D.S. 2004b. Updated stock assessment of Namibian orange roughy populations under the assumption of intermittent. Namibian Ministry of Fisheries and Marine Resources document: DWFWG/WkShop/Mar04/doc2.

**Table 1.** Yearly (fishing year) catches of orange roughy (in tons) taken from the aggregations considered in this paper. The notation of, for example, "1996" for year refers to the period July 1996 to June 1997. The year 2003 is incomplete as data were available only until September.

| Year  | Johnies | Frankies          | Rix    | Hotspot | South |
|-------|---------|-------------------|--------|---------|-------|
| 1994  | 1 145   |                   |        | 2 169   | 77    |
| 1995  | 3 773   | 2 291             | 323    | 897     | 82    |
| 1996  | 2 062   | 8 736             | 1 861  | 477     | 18    |
| 1997  | 7 539   | 4 817             | 3 836  | 482     | 6     |
| 1998  | 1 917   | 650               | 3 921  | 358     | 72    |
| 1999  | 1 367   | 40 <sup>†</sup>   | 444    | 226     | 37    |
| 2000  | 667     | 11 <sup>†</sup>   | 307    | 224     | 4     |
| 2001  | 452     | 214 <sup>†</sup>  | 183    | 106     | 134   |
| 2002  | 376     | 155 <sup>††</sup> | 350    | 336     | 590   |
| 2003* | 299     | 125 <sup>††</sup> | 96     | 59      | 472   |
| Total | 19 597  | 16 494            | 11 321 | 5 334   | 1 492 |

\* Incomplete

† Closed to normal commercial fishing

†† Fishery partially reopened since September 2002

**Table 2.** Geographical area for each sub-aggregation of orange roughy off Namibia including sub-aggregations south of *Johnies*.

| Aggregation   | Sub-aggregation | Area (km²) |
|---------------|-----------------|------------|
|               | Johnies1        | 82.8       |
| lohnies       | Johnies2        | 457.2      |
| <i>bonnes</i> | Johnies3        | 198.2      |
|               | Johnies4        | 587.1      |
|               | 21 Jump Street  | 39.2       |
|               | Frankies Flats  | 17.8       |
| Frankies      | Frankies Outer  | 1 255.0    |
|               | Three Sisters   | 39.6       |
|               | Smifton         | 15.8       |
| Rix           | Rix Inner       | 99.4       |
|               | Rix Outer       | 685.6      |
| Hotspot       | Hotspot Inner   | 97.3       |
| noispor       | Hotspot Outer*  | 89.0       |
|               | South 26        | 164.5      |
| South         | South 27        | 1 789      |
| ooun          | South 28        | 1 295      |
|               | South 29        | 989.6      |

**Table 3.** Abundance indices for orange roughy aggregations obtained by standardising the CPUE using the delta-lognormal model assuming binomial errors for the proportion positive to the observed CPUE data for Namibian orange roughy and then multiplying this index of density by the area of the sub-aggregation in question. The "zero" method is applied for years in which there is no data for sub-aggregations.

| Year    | Aggregation |          |         |         |         |  |
|---------|-------------|----------|---------|---------|---------|--|
|         | Johnies     | Frankies | Rix     | Hotspot | South   |  |
| 1997    | 207.407     | 131.231  | 378.253 | 12.522  | 54.608  |  |
| 1998    | 74.588      | 61.583   | 161.464 | 19.936  | 68.811  |  |
| 1999    | 33.671      | 29.242   | 32.061  | 10.402  | 81.201  |  |
| 2000    | 28.446      |          | 32.243  | 4.025   | 59.410  |  |
| 2001    | 16.230      | 41.644   | 23.607  | 6.736   | 208.433 |  |
| 2002    | 20.488      | 14.333   | 25.517  | 14.171  | 254.554 |  |
| 2003    | 14.338      | 2.687    | 16.757  | 1.918   | 98.316  |  |
| Average | 56.453      | 46.787   | 95.700  | 9.959   | 117.905 |  |

**Table 4.** Biomass estimates (in tons) obtained by Brandão and Butterworth (2004) for orange roughy aggregations for the reference case and the intermittent aggregation models.

|         | Aggregation    |                          |                |                             |                |                             |  |
|---------|----------------|--------------------------|----------------|-----------------------------|----------------|-----------------------------|--|
| Year    | Johnies        |                          | Frankies       |                             | Rix            |                             |  |
|         | Reference case | Intermittent aggregation | Reference case | Intermittent<br>aggregation | Reference case | Intermittent<br>aggregation |  |
| 1997    | 11 233         | 36 446                   | 8 354          | 26 770                      | 13 386         | 23 196                      |  |
| 1998    | 3 925          | 29 390                   | 4 114          | 22 502                      | 9 735          | 19 566                      |  |
| 1999    | 2 269          | 28 014                   | 4 054          | 22 416                      | 6 116          | 15 982                      |  |
| 2000    | 1 181          | 27 225                   | 4 594          | 22 933                      | 5 986          | 15 886                      |  |
| 2001    | 800            | 27 148                   | 5 152          | 23 468                      | 5 997          | 15 932                      |  |
| 2002    | 637            | 27 290                   | 5 500          | 23 796                      | 6 134          | 16 102                      |  |
| 2003    | 551            | 27 509                   | 5 898          | 24 176                      | 6 109          | 16 109                      |  |
| Average | 2 942          | 29 003                   | 5 381          | 23 723                      | 7 637          | 17 539                      |  |

**Table 5.** Estimates of biomass in the South aggregation obtained by calibrating against aCPUE×Area index of abundance for other aggregations, and the model estimates of<br/>average biomass in Table 4.

| •          | Average biomass in<br>South aggregation |              |  |  |
|------------|-----------------------------------------|--------------|--|--|
| Calibrated |                                         |              |  |  |
| against    | Poforonoo ooco                          | Intermittent |  |  |
|            | Reference case                          | aggregation  |  |  |
| Johnies    | 6 145                                   | 60 575       |  |  |
| Frankies   | 15 820                                  | 69 747       |  |  |
| Rix        | 9 410                                   | 21 609       |  |  |



Figure 1. Commercial tows of orange roughy south of *Johnies*.



**Figure 2.** Comparison of the month factor estimated in the GLM analyses for the recognised and for the *South* aggregations.